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Pressure, potential
temperature, and
equivalent potential
temperature time series
at weather ship ‘D’ for
28-30 January 1972
(Stubbs 1975)
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The January 1972 surface cyclogenesis processes were
associated with a regime change in the North Atlantic Basin

Sanders and Gyakum (1980) noted the clustering of explosive
cyclogeneses during 11-17 February 1979

At the end of this clustering was the Presidents’ Day cyclone



Six-hourly SLP, 1000-500 hPa
thickness, Dynamic Tropopause (2
PVU level) jet (>100 knots) for 28
Jan-3 Feb 1972

Dark Blue: 474-480 dam
Blue: 492-498 dam
Pink: 540-546 dam
Red: 558-564 dam
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Previous slides illustrate the upscale
growth of surface cyclonic coverage
throughout the North Atlantic basin



The initial cyclogenesis (1200 UTC, 28 Jan) occurs on the
equatorward side of the jet, where the moist Brunt-

Vaisala frequency (N, )*= (g/T)(0T/0z + I',)) is near zero
(units of 104 s?)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 720128/1200¥000 2 POTV KNTSPED




At 1200 UTC, 30 January 1972, the cyclone has migrated to the
left exit region of the jet, while a new surface cyclogenesis is

occurring on the equatorward side of the jet in near zero
effective stability:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 720130/1200¥000 2 POTV KNTSPED



Consider that the more extreme of the N. Atlantic

cyclones deepened at 2.6 bergerons).
From Roebber (1984):

FiG. 2. Twenty-four hour deepening distribution, one-year data. The dashed line indicates
the Bergeron definition of a bomb; points to the right of the line are bombs.



Index for North Atlantic Basin Storm Acti
Its relationship to explosive cyclogenesis

Concluding
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The count of events during which the areal
coverage (%) in the North Atlantic basin (25-60
deg N; 80-0 deg W) of moist baroclinic growth
exceeding 1.5/day exceeds 2 standard
deviations from a 30-year running mean
climatology



Observations




Jan-Feb 1972 time series of % N Atl coverage of

large (>1.5 day!) moist growth

'

A
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g1 101 121 141 151 181 201 221

time (number of 6-h periods)

The left-most arrow points to the time of first appearance of explosive cyclone
1 (1200 UTC, 28 January 1972). The right most arrow points to the time of the
completion of explosive cyclogenesis (1800 UTC, 31 January 1972) of cyclone 2.




Jan-Feb 1979 time series of % N Atl coverage of
large (>1.5 day!) moist growth

time (number of 6-h periods)

The left-most arrow points to the initial time (0000 UTC, 10 February 1979) of
the week-long sequence of ‘cluster’ bomb events discussed in the Sanders-
Gyakum (1980) paper. The second arrow points to the completion (1800 UTC,
16 February 1979) of the week. The third arrow points to the first appearance
(1800 UTC, 18 February 1979) of the Presidents’ Day cyclone (Bosart 1981).




S0 of moist barochniz growdh -
1350-2014

North Atlantic Storm Index

through February 2014 (counts ¢
standard deviations with absolute va
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OCcTORER 980 FREDERICK SANDERS AND JOHN R. GYAKUM

Synoptic-Dynamic Climatology of the “Bomb

FrepeErick Sanpers anp Jouw B, Gyaxum
Bepartment of Mereorclogy, Masrackureits Institure of Techeology, Cambridge 02139
[Manuscripd received T4 March 1980, in final form 12 June 19800

ABSTRACT

By defining a “"bomb™ s an extratropical surface cyclone whose cemtral pressire fall aversges an least
1 mb k™' for 24 h, we have studied this explosive n\u.lngenﬂu. in the Morthern Hemisphere duriag 1he
period September 1976-May 1979, This predominantly maritime, cold-season event 5 usually found
=400 n mi downsiream from a mobdle 500 mb lrm@.wilhinwwlznzrd-nl'thz maximum westerlies, and
within or ahead of the planetary-scale troughs.

A mone detailed examination of bombs (using & 12 h development criterion) was performed during the
|1978=T% season. A survey of sea surface lemperatures (5T 3) in and around the cyclone center indicates
explosive development accurs over a wide range of 85T's. but, preferentially, near the strongest gradients.

A quash-peostrophic diageosis of & compon
shart of observed rates, A
absos Eall far shor in attempt

1. Introduction

Tor Bergeron is reputed to have characterized a
rapidly deepening extratropical low as one in which
the central pressure at sea level falls at the rate of
at least | mb h" for 24 h. An extreme example of
the development of a storm of this type appears in
Fig. 1, The extraordinary deepening occurred during
an interval of unfortunately sparse coverage of ship
observations near the center that we know the
central intensity only at the in and final times,
Mote that nearly the strongest winds occur only
-6 m mi from the center, and that the radial profile
of wind near the center must resemble that of a
tropical cyclone. Note further that the storm de-
velops along the leading edge of an outhreak of
bitterly cold air over the western Atlantic, but that
the cold air does not penetrate to the center of
the low.

A Defense Meteorological Satellite view (Fig, 2
about midway through the illustrated period, showy
a major “head cloud™ mass of great meridiona
extent, considered by Jalu (1973) and by Botiger
et al. (1975) to be characteristic of intense deepening
on a small scale. Note also the indication of deep
convection along the rear edge of the main cloud
m corresponding to the cold front, and the
eyelike circular clear area perhaps 40n mi in
diameter near 43°M, 43"W, near the estimated

on of the surface center. These characteristics
also appear to be typical,

We are interested in this phenomenon because
of its great practical importance 1o shipping and

(2T DA B0 101 5B 18508 50
& 1980 American Meteorological Society

IEapigen boam

ndeCales iFntanthnecus pressune Talls far
| Cemler moddels shows Ihese producls

& 10 sapture observed rapid despesing.

1o coastal regions. Even pleasure craft are en-
dangered by these storms; the tragic loss of life in
the 1979 Fastnet yacht race was attnibutable to &
rare summer example of the meteorological “bomb™
(Rice, 1979). We are also interested in these storms
because (as will be shown later) deepening rates
predicted by current operational dynamical models
fall far short of the observed ones, implying that
some physical effect other than the commonly
understood large-scale baroclinic mechanism may
play an important role. Finally, the rapid deepening
process may be a necessary component in a realistic
mode] simu nof the general circulation. We have
tested the notion that most of the hemlsphere 5
deepest cyclones (which usually trackres

'rlnaJ rtstmg placer in the vicini the ]cclnmlu:

thc 37 dccp lows (960 mb or Iuwr.rj found du.rmg
the S-month period beginning | September 1978,
31 qualified as a bomb (using the criteria defined

fig is a characteristic of the wast
ma]nnly of the deepest cyclones.

2. A threc-year data sample

For three recent cold seasons we have studied
this class of explosively intensifying cyclones in
the Northern Hemisphere from longitude 130°E
eastward to 10FE. As Bergeron's characterization
probably referred to the latitude of Bergen (60°FN), a
geostrophically equivalent rate was obtained for
arbitrary latitude & by multiplying his rate by
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3.05 Bergeron -
Intensification
At33°N, 71°W - .-
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The following two figures show the
areal coverage of large moist
baroclinic growth rates, along with
850-hPa frontogenesis for extreme
values of NASTI
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Concluding discussion

*CycC

e Moist b ric for
basin-wide

e There is a sugg
Increasing in recent dece

e Cyclogenesis forecasts have obviously improved. However,
there are still crucial cases that are ‘missed’, which may have
Impact on medium-range forecasts.
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