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“The pressure gradient is especially tight to the west of
the storm center and approaches 1 mb (5 km)-1.”
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“The pressure gradient is especially tight to the west of
the storm center and approaches 1 mb (5 km)-1.”
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“Weather conditions
are somewhat less
than ideal for ocean
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evolution of
surface airstreams

Coincidence between and fronts

front and sting jet?

Cause of descent?

Cause of the
accelerations?

cold conveyor-belt jet wraps
around the cyclone Clark et al. (2005)




What causes _
the descent? §
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The momentum equation tells us how
high winds develop.
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The momentum equation tells us how
high winds develop.
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The momentum equation tells us how
high winds develop.
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The momentum equation tells us how
high winds develop.

slows wind down:
can’t explain acceleration



The momentum equation tells us how
high winds develop.
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(c) 1800 UTC 7 DEC 2005 850 mb Wind Speed, Height, PGF
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 End of bent-back front
« Lasts for a finite time just before maturity of cyclone
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Strong winds In cyclones: Re-learning and Learning

Frontolysis causes descent of the sting jet.
 End of bent-back front
o Lasts for a finite time just before maturity of cyclone

Cold conveyor belt jet accelerated by strong
pressure-gradient force in direction of motion.

Southwest wind maximum accelerated by both:

*Pressure-gradient force
.Downward advection of momentum.

Complicates the definition of “sting jet”






Revisiting strong winds In cyclones

Frontolysis causes descent of the sting jet.

*End of bent-back front
sLasts for a finite time just before maturity of cyclone

Single wind-speed maximum could derive from two
different mechanisms.

*Acceleration due to pressure-gradient force

Downward advection of momentum

Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify
sting jets in extratropical cyclones. Wea. Forecasting, 28, 603—-613.

Slater, T., D. M. Schultz, and G. Vaughan, 2014: Acceleration of near-surface
strong winds in a dry, idealised extratropical cyclone. QJRMS, submitted.
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Neiman and Shapiro (1993) -
00 UTC 5 January 1989 176




“The SLP gradient continued to increase west of the
storm center, with the strongest gradient rotating
cyclonically around into the cyclone’s southern
guadrant. There, near-surface wind speeds approached
45 m s~1.” — Neiman and Shapiro (1993)
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generation of kinetic
| energy by cross-
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Relationship between
front and sting jet?

evolution of
surface airstreams
and fronts

Descending sting jet
distinct from cold-
conveyor belt?

Dynamics of
strong winds
In cyclones

Clark et al. (2005)



Schultz and Sienkiewicz
Storm
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925-mb Theta, Wind Speed, Static Stah:ulltyr
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Top: sea-level pressure, 925-mb theta, wind speed (shaded)
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“Summary

Strong Winds:
 acceleration of winds into cold conveyor belt
* highest pressure gradient to rear of cyclone
* NO sting jet at surface



GENERIC SLIDES



Evolution of an Extratropical Cyclone

Shapiro—Keyser (1990)
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Ingredients for a Sting Jet

Frontogenesis and ascent of warm air along
bent-back front.

Frontolysis at end of back-bent front and
descent of warm air.

Low static and symmetric stability favors
descent.

Near-neutral static stability in boundary layer
favors mixing downward of high momentum air.
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Why have sting jets only been
documented In
Shapiro—Keyser cyclones?



Norwegian Cyclone

sea-level pressure
near-surface temperature
axes of dilatation
frontolysis (FL)

Shapiro—Keyser Cyclone

(Schultz et al. 1998)



Frontogenesis/frontolysis is the
physical mechanism for sting jets.

Why sting jets occur at the end of bent-back front.

Why sting jets occur in Shapiro—Keyser cyclones,
but not Norwegian cyclones.

Why trajectories ascend, then descend.
Why evaporation is unimportant.

Why CSI results are ambiguous.



Lessons from Today’s Talk

When introducing terminology and speculation
In your own work, do so carefully.

Beware persistent, but potentially incorrect,
conventional wisdom.

Be aware of the previous literature.



Gronas (1995, Figs.3b and 4b)

Clark et al. (2005, Fig. 7)

Baker (2009, Fig. 5)

Baker et al. (2012, Fig.5)

Smart and Browning (2012, Fig. 11)
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Gray et al. (2011):

“CSl release has a role in the generation of the sting jet,
that the sting jet may be driven by the release of
iInstabllity to both ascending and descending parcels,
and that DSCAPE could be used as a discriminating
diagnostic for the sting jet based on these four case
studies.”

“The presence of CSl release In the sting-jet storms and
sting jets, and its absence in the non-sting-jet storm,
strongly suggests that this mechanism Is important in
the generation of the sting jet in these cases.”

“CSl release Is not a necessary criterion for the
presence of weakly descending jets that satisfy the
definition of sting jet used here.”
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"l don't know that much about sting jets
as they came to light since | retired.”




Smart and Browning (2013):

“CSlI did not play a major role in the evolution of these
[sting jet] parcels. This does not necessarily rule out a
role for CSI at other times and places in this storm but a
thorough invesmagtion of this is beyond the limited

scope of this | Th,-e

/ate,;
Storm, ;
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Why Is it called a sting jet?

“the poisonous tail’ of the back-bent occlusion”

(Grgnas 1995, after F. Spinnangr, Western Norwegian
Forecasting Office)

“The sting at the end of the tail”
(Browning 2004)
Only called a sting jet in the last sentence of the paper



Browning (2004) defined the research agenda.

Re-examination of observations from the Great
Storm of 15-16 October 1987

Strongest winds south and east of the low center

Proposed causes:

1. Attributed evaporative cooling to descending
air

2. Release of conditional symmetric instability
(CSI) iIn comma cloud head



50 -

i peak surface wind gusts (m s™)
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How has the argument for CSI| and
evaporation evolved?

1. Browning and Coauthors

2. Gray and Coauthors



Browning (2004):

“Evidence has been presented of the existence of
multiple slantwise circulations.... It is
tempting...to attribute these circulations to CSI.”

“A proper evaluation of the possible importance of
CSI on this occasion awaits the application of a
methodology for estimating 3-dimensional
SCAPE.”



Clark et al. (2005):

“It Is suspected that the multiple slantwise
circulations may be a manifestation of CSI. This
remains to be proved.”

“It Is left to a third paper In this series to
demonstrate the causal link between the
evaporation and the intensification of the SJ.”



Smart and Browning (2013):

“CSlI did not play a major role in the evolution of
these [sting |et] parcels. This does not necessarily
rule out a role for CSI at other times and places In
this storm but a thorough investigation of this Is
beyond the limited scope of this paper.”



Gray et al. (2011):

“CSl release Is not a necessary criterion for the
presence of weakly descending jets that satisfy the
definition of sting jet used here.”



Martinez-Alvarado et al. (2011):

“...It IS assumed that the release of CSI I1s needed for
sting jets to develop.

Evaporative cooling of rain and snow falling from upper
levels into the sting jet Is necessary for the release of
CSI by descending air parcels and has also been
proposed as a mechanism that enhances the
development of sting jets.”



L. Baker et al. (2013):

“While evaporative cooling occurs along the sting-jet
trajectories, a sensitivity experiment with evaporation
effects turned off shows no significant change to the
wind strength or descent rate of the sting jet....”



L. Baker et al. (2013):

“While evaporative cooling occurs along the sting-jet
trajectories, a sensitivity experiment with evaporation
effects turned off shows no significant change to the
wind strength or descent rate of the sting jet....”

(This result also corroborated by Tim Baker
and David Smart in different cases.)



L. Baker et al. (2013):

“While evaporative cooling occurs along the sting-jet
trajectories, a sensitivity experiment with evaporation
effects turned off shows no significant change to the
wind strength or descent rate of the sting jet implying
that instability release is the dominant sting-jet driving
mechanism.”



Gray et al. (2011):
CSI not necessary for sting jets

Martinez-Alvarado et al. (2011):
CSIl assumed necessary for sting jets,
evaporation is necessary to release CSI

L. Baker et al. (2013):
release of CSI| “dominant”,
evaporation not important



What do we make of the previous
literature?

Evaporative cooling Is not important in sting jets.
CSI may or may not be important in sting jets.

CSl release depends upon some vertical motion.
The mechanism for that vertical motion Is not

identified.

No firm conclusion about what controls sting-jet
formation.



Let’s try a different ingredients-based approach.

Our work Is based on kinematics and dynamics,
not thermodynamics.

What Is the physical process that is responsible
for the descent of the air eventually forming
the sting jet?



Frontogenesis (Petterssen 1936)

1
F = ZIV,01(E cos2f — V- V),

deformation  divergence
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925-mb Theta, Wind Speed, Static Stah:ulltyr
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One case Is Intriguing...

IS frontolysis present in other
cyclones with sting jets?



Grgnas (1995, Figs. 3b and 4b)



Clark et al. (2005, Fig. 7)
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Baker et l. (2012 Fig.5)

Smart and Browning (2012 qu 11)



Smart and Browning (2013):

Attribution of strong winds to a cold conveyor belt and sting jet, QIRMS, in press.

3 January 2012
Scottish storm
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iller Frontogenesis (3D) (div+def)
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Miller Frontogenesis (3D) (div+def)

Pressure at theta e = 300 K sm= 3
Horizontal wind vectors at theta e = 300 K

(relative 1o ¥= 17.9 m/s)
Horizental wind speed at theta & = 300 K sm= 3
Vertical veloci

CONTOURS: UN|TS=em s™' LOW= -30.000 HIGH= 80.000 INTERVAL=  10.000 DaVId Smart
CONTOURS: UNITS=m s~ LOW= 4.0000 HIGH= 44.|‘JDDH INTERVAL=  4.0000

MAXIMUM YECTO ' m 3 =




Ingredients for a Sting Jet

Frontogenesis and ascent of warm air along
bent-back front.

Frontolysis at end of back-bent front and
descent of warm air.

Low static and symmetric stability favors
descent.

Near-neutral static stability in boundary layer
favors mixing downward of high momentum air.






Schultz and Vaughan (2011)
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Why have sting jets only been
documented In
Shapiro—Keyser cyclones?



Norwegian Cyclone

sea-level pressure
near-surface temperature
axes of dilatation
frontolysis (FL)

Shapiro—Keyser Cyclone

(Schultz et al. 1998)



Frontogenesis/frontolysis is the
physical mechanism for sting jets.

Why sting jets occur at the end of bent-back front.

Why sting jets occur in Shapiro—Keyser cyclones,
but not Norwegian cyclones.

Why trajectories ascend, then descend.
Why evaporation is unimportant.

Why CSI results are ambiguous.



Mysteries remain...
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Lessons from Today’s Talk

When introducing terminology and speculation
In your own work, do so carefully.

Beware persistent, but potentially incorrect,
conventional wisdom.

Be aware of the previous literature.



Frontogenesis/frontolysis is the physical
mechanism for sting jets.

Why sting jets occur at end of bent-back fronts.

Why trajectories ascend, then descend.
Why evaporation is relatively unimportant.
Why CSI results are ambiguous.

Mesoscale dimensions and descent.



Gronas (1995, Figs.3b and 4b)

Clark et al. (2005, Fig. 7)

Baker (2009, Fig. 5)

Baker et al. (2012, Fig.5)

Smart and Browning (2012, Fig. 11)
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Gray et al. (2011):

“CSl release has a role in the generation of the sting jet,
that the sting jet may be driven by the release of
iInstabllity to both ascending and descending parcels,
and that DSCAPE could be used as a discriminating
diagnostic for the sting jet based on these four case
studies.”

“The presence of CSl release In the sting-jet storms and
sting jets, and its absence in the non-sting-jet storm,
strongly suggests that this mechanism Is important in
the generation of the sting jet in these cases.”

“CSl release Is not a necessary criterion for the
presence of weakly descending jets that satisfy the
definition of sting jet used here.”
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"l don't know that much about sting jets
as they came to light since | retired.”




Smart and Browning (2013):

“CSlI did not play a major role in the evolution of these
[sting jet] parcels. This does not necessarily rule out a
role for CSI at other times and places in this storm but a
thorough invesmagtion of this is beyond the limited

scope of this | Th,-e

/ate,;
Storm, ;







Frontogenesis (Petterssen 1936)
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Frontogenesis
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evolution of
surface airstreams
and fronts

Clark et al. (2005)



Coincidence between
front and sting jet?

evolution of
surface airstreams
and fronts

Descending sting jet
distinct from cold-
conveyor belt?

Clark et al. (2005)
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