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 “Weather conditions   
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 than ideal for ocean  
 crusing.” 



Whitaker et al. (1988) 

pressure 
mb 
 
wind speed 
m s–1 



Clark et al. (2005) 

evolution of  
surface airstreams 
and fronts 



Clark et al. (2005) 

evolution of  
surface airstreams 
and fronts 

cold conveyor belt jet 



Clark et al. (2005) 

evolution of  
surface airstreams 
and fronts 

cold conveyor belt jet 



Clark et al. (2005) 

cold conveyor belt jet 

sting jet 

Death From Above 
      ~ 650 mb 

evolution of  
surface airstreams 
and fronts 



Clark et al. (2005) 

cold conveyor belt jet 

sting jet 
evolution of  
surface airstreams 
and fronts 



Clark et al. (2005) 

cold conveyor belt jet 

sting jet 

cold conveyor belt jet wraps 
around the cyclone 
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The momentum equation tells us how 
high winds develop.  
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Strong winds in cyclones: Re-learning and Learning 

Frontolysis causes descent of the sting jet.  
•   End of bent-back front 
•   Lasts for a finite time just before maturity of cyclone 
 
Cold conveyor belt jet accelerated by strong 
pressure-gradient force in direction of motion. 
 

Southwest wind maximum accelerated by both: 
•Pressure-gradient force  
•Downward advection of momentum. 
 

Complicates the definition of “sting jet” 





Revisiting strong winds in cyclones 

Frontolysis causes descent of the sting jet.  
•End of bent-back front 
•Lasts for a finite time just before maturity of cyclone 
 
Single wind-speed maximum could derive from two 
different mechanisms. 
•Acceleration due to pressure-gradient force 
•Downward advection of momentum 
 
 
 
 

Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify 
sting jets in extratropical cyclones. Wea. Forecasting, 28, 603–613. 
 

Slater, T., D. M. Schultz, and G. Vaughan, 2014: Acceleration of near-surface 
strong winds in a dry, idealised extratropical cyclone. QJRMS, submitted. 
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Neiman and Shapiro (1993) “The SLP gradient continued to increase west of the 
storm center, with the strongest gradient rotating 
cyclonically around into the cyclone’s southern 
quadrant.  There, near-surface wind speeds approached 
45 m s–1.” – Neiman and Shapiro (1993) 
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distinct from cold-
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evolution of  
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and fronts 
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Summary 

 
Strong Winds: 
  • acceleration of winds into cold conveyor belt 
  • highest pressure gradient to rear of cyclone 
  • no sting jet at surface  
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Ingredients for a Sting Jet 
1. Frontogenesis and ascent of warm air along 

bent-back front. 
 

2. Frontolysis at end of back-bent front and 
descent of warm air. 
 

3. Low static and symmetric stability favors 
descent. 
 

4. Near-neutral static stability in boundary layer 
favors mixing downward of high momentum air. 
 
 



    

Schultz and Vaughan (2011) 
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documented in  

Shapiro–Keyser cyclones? 



Norwegian Cyclone 

Shapiro–Keyser Cyclone 

sea-level pressure 
near-surface temperature 

axes of dilatation 
frontolysis (FL) 

(Schultz et al. 1998) 



Frontogenesis/frontolysis is the 
physical mechanism for sting jets. 
Why sting jets occur at the end of bent-back front. 
 
Why sting jets occur in Shapiro–Keyser cyclones, 
but not Norwegian cyclones. 
 
Why trajectories ascend, then descend. 
 
Why evaporation is unimportant. 
 
Why CSI results are ambiguous. 
 
 



Lessons from Today’s Talk 

1. When introducing terminology and speculation 
in your own work, do so carefully. 
 

2. Beware persistent, but potentially incorrect, 
conventional wisdom. 
 

3. Be aware of the previous literature. 







"I don't know that much about sting jets  
as they came to light since I retired.  



Gray et al. (2011):  
“CSI release has a role in the generation of the sting jet, 
that the sting jet may be driven by the release of 
instability to both ascending and descending parcels, 
and that DSCAPE could be used as a discriminating 
diagnostic for the sting jet based on these four case 
studies.” 
 
“The presence of CSI release in the sting-jet storms and 
sting jets, and its absence in the non-sting-jet storm, 
strongly suggests that this mechanism is important in 
the generation of the sting jet in these cases.” 
 
“CSI release is not a necessary criterion for the 
presence of weakly descending jets that satisfy the 
definition of sting jet used here.” 



"I don't know that much about sting jets  
as they came to light since I retired.”  



Smart and Browning (2013):  
 
“CSI did not play a major role in the evolution of these 
[sting jet] parcels. This does not necessarily rule out a 
role for CSI at other times and places in this storm but a 
thorough investigation of this is beyond the limited 
scope of this paper.” 



Clark et al. (2005) 

surface airstreams 
and fronts 



Why is it called a sting jet? 

“‘the poisonous tail’ of the back-bent occlusion”  
(Grønås 1995, after F. Spinnangr, Western Norwegian 
Forecasting Office) 
 
“The sting at the end of the tail” 
(Browning 2004) 
Only called a sting jet in the last sentence of the paper 

 
 



Browning (2004) defined the research agenda. 

Re-examination of observations from the Great 
Storm of 15–16 October 1987 
 
Strongest winds south and east of the low center 
 
Proposed causes: 
1. Attributed evaporative cooling to descending 
air 
 
2. Release of conditional symmetric instability 
(CSI) in comma cloud head 



Browning (2004) defined the research 
approach.  

peak surface wind gusts (m s–1) 
0130 UTC 16 October 1987 

L 



Browning and  
Field (2004) 



How has the argument for CSI and 
evaporation evolved? 

1. Browning and Coauthors 
 
 
2. Gray and Coauthors 



Browning (2004):  
 
 
“Evidence has been presented of the existence of 
multiple slantwise circulations…. It is 
tempting…to attribute these circulations to CSI.” 
 
“A proper evaluation of the possible importance of 
CSI on this occasion awaits the application of a 
methodology for estimating 3-dimensional 
SCAPE.” 



Clark et al. (2005):  
 
 
“It is suspected that the multiple slantwise 
circulations may be a manifestation of CSI.  This 
remains to be proved.” 
 
“It is left to a third paper in this series to 
demonstrate the causal link between the 
evaporation and the intensification of the SJ.” 
 



Smart and Browning (2013):  
 
 
“CSI did not play a major role in the evolution of 
these [sting jet] parcels. This does not necessarily 
rule out a role for CSI at other times and places in 
this storm but a thorough investigation of this is 
beyond the limited scope of this paper.” 



Gray et al. (2011):  
 
 
 
“CSI release is not a necessary criterion for the 
presence of weakly descending jets that satisfy the 
definition of sting jet used here.” 



Martinez-Alvarado et al. (2011):  
 
 
 
“…it is assumed that the release of CSI is needed for 
sting jets to develop. 
 
Evaporative cooling of rain and snow falling from upper 
levels into the sting jet is necessary for the release of 
CSI by descending air parcels and has also been 
proposed as a mechanism that enhances the 
development of sting jets.” 



L. Baker et al. (2013):  
 
 
 
“While evaporative cooling occurs along the sting-jet 
trajectories, a sensitivity experiment with evaporation 
effects turned off shows no significant change to the 
wind strength or descent rate of the sting jet….” 
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 and David Smart in different cases.)  
 
 
 
 



L. Baker et al. (2013):  
 
 
 
“While evaporative cooling occurs along the sting-jet 
trajectories, a sensitivity experiment with evaporation 
effects turned off shows no significant change to the 
wind strength or descent rate of the sting jet implying 
that instability release is the dominant sting-jet driving 
mechanism.” 
 
 
 
 



 
 
Gray et al. (2011):  
 CSI not necessary for sting jets 
 
Martinez-Alvarado et al. (2011):  
 CSI assumed necessary for sting jets, 
 evaporation is necessary to release CSI 
 
L. Baker et al. (2013):  
 release of CSI “dominant”, 
 evaporation not important 
 
 
 
 



What do we make of the previous 
literature? 

Evaporative cooling is not important in sting jets. 
 
CSI may or may not be important in sting jets. 
 
CSI release depends upon some vertical motion.  
The mechanism for that vertical motion is not 
identified. 
 
No firm conclusion about what controls sting-jet 
formation. 



Let’s try a different ingredients-based approach. 
 
Our work is based on kinematics and dynamics, 
not thermodynamics. 
 
 
 
What is the physical process that is responsible 
for the descent of the air eventually forming  
the sting jet? 
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One case is intriguing… 
 

Is frontolysis present in other 
cyclones with sting jets? 



Grønås (1995, Figs. 3b and 4b) 





(Baker 2009, Fig. 5) 



Smart and Browning (2013): 
  Attribution of strong winds to a cold conveyor belt and sting jet, QJRMS, in press. 

3 January 2012 
Scottish storm 
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Ingredients for a Sting Jet 
1. Frontogenesis and ascent of warm air along 

bent-back front. 
 

2. Frontolysis at end of back-bent front and 
descent of warm air. 
 

3. Low static and symmetric stability favors 
descent. 
 

4. Near-neutral static stability in boundary layer 
favors mixing downward of high momentum air. 
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Shapiro–Keyser Cyclone 

sea-level pressure 
near-surface temperature 

axes of dilatation 
frontolysis (FL) 

(Schultz et al. 1998) 
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Mysteries remain… 

1200 UTC 9 Feb 2013 

Eastern US storm Nemo: 925-mb geostrophic wind 

6 h later 



Lessons from Today’s Talk 

1. When introducing terminology and speculation 
in your own work, do so carefully. 
 

2. Beware persistent, but potentially incorrect, 
conventional wisdom. 
 

3. Be aware of the previous literature. 



Frontogenesis/frontolysis is the physical 
mechanism for sting jets. 

Why sting jets occur at end of bent-back fronts. 
 
Why trajectories ascend, then descend. 
 
Why evaporation is relatively unimportant. 
 
Why CSI results are ambiguous. 
 
Mesoscale dimensions and descent. 











"I don't know that much about sting jets  
as they came to light since I retired.  



Gray et al. (2011):  
“CSI release has a role in the generation of the sting jet, 
that the sting jet may be driven by the release of 
instability to both ascending and descending parcels, 
and that DSCAPE could be used as a discriminating 
diagnostic for the sting jet based on these four case 
studies.” 
 
“The presence of CSI release in the sting-jet storms and 
sting jets, and its absence in the non-sting-jet storm, 
strongly suggests that this mechanism is important in 
the generation of the sting jet in these cases.” 
 
“CSI release is not a necessary criterion for the 
presence of weakly descending jets that satisfy the 
definition of sting jet used here.” 
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Smart and Browning (2013):  
 
“CSI did not play a major role in the evolution of these 
[sting jet] parcels. This does not necessarily rule out a 
role for CSI at other times and places in this storm but a 
thorough investigation of this is beyond the limited 
scope of this paper.” 
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Slater et al. (2014) 
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Clark et al. (2005) 

Coincidence between 
front and sting jet? 
 
Descending sting jet 
distinct from cold-
conveyor belt? 
 

evolution of  
surface airstreams 
and fronts 
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